skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miller, Jon_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Observations of tidal disruption events (TDEs) show signs of nitrogen enrichment reminiscent of other astrophysical sources such as active galactic nuclei and star-forming galaxies. Given that TDEs probe the gas from a single star, it is possible to test whether the observed enrichment is consistent with expectations from the CNO cycle by looking at the observed nitrogen/carbon (N/C) abundance ratios. Given that ≈20% of solar-mass stars (and an even larger fraction of more massive stars) live in close binaries, it is worthwhile to also consider what TDEs from stars influenced by binary evolution would look like. We show here that TDEs from stars stripped of their hydrogen-rich (and nitrogen-poor) envelopes through previous binary-induced mass loss can produce much higher observable N/C enhancements than even TDEs from massive stars. Additionally, we predict that the time dependence of the N/C abundance ratio in the mass fallback rate of stripped stars will follow the inverse behavior of main-sequence stars, enabling a more accurate characterization of the disrupted star. 
    more » « less